Targeting abasic sites and single base bulges in DNA with metalloinsertors.
نویسندگان
چکیده
The site-specific recognition of abasic sites and single base bulges in duplex DNA by sterically expansive rhodium metalloinsertors has been investigated. Through DNA photocleavage experiments, Rh(bpy)2(chrysi)3+ is shown to bind both abasic sites and single base bulges site-specifically and, upon irradiation, to cleave the backbone of the defect-containing DNA. Photocleavage titrations reveal that the metal complex binds DNA containing an abasic site with high affinity (2.6(5) x 106 M-1), comparably to the metalloinsertor and a CC mismatch. The complex binds single base bulge sites with lower affinity (approximately 105 M-1). Analysis of cleavage products and the correlation of affinities with helix destabilization suggest that Rh(bpy)2(chrysi)3+ binds both lesions via metalloinsertion, as observed for Rh binding at mismatched sites, a binding mode in which the mismatched or unpaired bases are extruded from the helix and replaced in the base stack by the sterically expansive ligand of the metalloinsertor.
منابع مشابه
Recognition of abasic sites and single base bulges in DNA by a metalloinsertor.
Abasic sites and single base bulges are thermodynamically destabilizing DNA defects that can lead to cancerous transformations if left unrepaired by the cell. Here we discuss the binding properties with abasic sites and single base bulges of Rh(bpy)(2)(chrysi)(3+), a complex previously shown to bind thermodynamically destabilized mismatch sites via metalloinsertion. Photocleavage experiments sh...
متن کاملLuminescent properties of ruthenium(II) complexes with sterically expansive ligands bound to DNA defects.
A new family of ruthenium(II) complexes with sterically expansive ligands for targeting DNA defects was prepared, and their luminescent responses to base pair mismatches and/or abasic sites were investigated. Design of the complexes sought to combine the mismatch specificity of sterically expansive metalloinsertors, such as [Rh(bpy)2(chrysi)](3+) (chrysi = chrysene-5,6-quinone diimine), and the...
متن کاملBiological effects of simple changes in functionality on rhodium metalloinsertors.
DNA mismatch repair (MMR) is crucial to ensuring the fidelity of the genome. The inability to correct single base mismatches leads to elevated mutation rates and carcinogenesis. Using metalloinsertors-bulky metal complexes that bind with high specificity to mismatched sites in the DNA duplex-our laboratory has adopted a new chemotherapeutic strategy through the selective targeting of MMR-defici...
متن کاملDNA mismatch binding and antiproliferative activity of rhodium metalloinsertors.
Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, a...
متن کاملInduction of double-strand breaks by S1 nuclease, mung bean nuclease and nuclease P1 in DNA containing abasic sites and nicks.
Defined DNA substrates containing discrete abasic sites or paired abasic sites set 1, 3, 5 and 7 bases apart on opposite strands were constructed to examine the reactivity of S1, mung bean and P1 nucleases towards abasic sites. None of the enzymes acted on the substrate containing discrete abasic sites. Under conditions where little or no non-specific DNA degradation was observed, all three nuc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 130 24 شماره
صفحات -
تاریخ انتشار 2008